16(4)=v^2

Simple and best practice solution for 16(4)=v^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16(4)=v^2 equation:



16(4)=v^2
We move all terms to the left:
16(4)-(v^2)=0
We add all the numbers together, and all the variables
-1v^2+164=0
a = -1; b = 0; c = +164;
Δ = b2-4ac
Δ = 02-4·(-1)·164
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{41}}{2*-1}=\frac{0-4\sqrt{41}}{-2} =-\frac{4\sqrt{41}}{-2} =-\frac{2\sqrt{41}}{-1} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{41}}{2*-1}=\frac{0+4\sqrt{41}}{-2} =\frac{4\sqrt{41}}{-2} =\frac{2\sqrt{41}}{-1} $

See similar equations:

| 5x+1/3x-4=16/5 | | 16x+2=120+24x-2 | | 7(1-x)=(x-2) | | 3(x+4)=‘6 | | 1,2x+8=10-0,8x | | 0x+4=7x+5 | | 14(-10+x)=-7(1-3x) | | 65=100-x | | 4(3x➕2)➕7=21 | | 2/(y-5)=3/(y+6) | | Y=72-9x | | 16(4)=v | | |3x-14|=-10 | | -8/5=-2/3u-1/2 | | 65=109-x | | (180-(3x+7)-(2x+6)=180 | | 6x+11=4x-3 | | 0.5z+0.5z=5 | | 5(y-1)=y+1-6(-3y-2) | | -0.2n+7=2 | | 12x+4=58+7x-4 | | (1/2z)+(1/2z)=5 | | 420=280+c | | 2x+10=10x | | 4x+0.5x+0.8x=27 | | -32=8y+4(y+7) | | -1/5n+7=2 | | 5x-7=3×+18 | | 2x+0.5x+x+0.8x=27 | | -9u^2–80=0 | | -9u2–80=0 | | 2x+1/2x+x+0.8x=27 |

Equations solver categories